10 research outputs found

    Gaussian Nonlinear Line Attractor for Learning Multidimensional Data

    Get PDF
    The human brain’s ability to extract information from multidimensional data modeled by the Nonlinear Line Attractor (NLA), where nodes are connected by polynomial weight sets. Neuron connections in this architecture assumes complete connectivity with all other neurons, thus creating a huge web of connections. We envision that each neuron should be connected to a group of surrounding neurons with weighted connection strengths that reduces with proximity to the neuron. To develop the weighted NLA architecture, we use a Gaussian weighting strategy to model the proximity, which will also reduce the computation times significantly. Once all data has been trained in the NLA network, the weight set can be reduced using a locality preserving nonlinear dimensionality reduction technique. By reducing the weight sets using this technique, we can reduce the amount of outputs for recognition tasks. An appropriate distance measure can then be used for comparing testing data and the trained data when processed through the NLA architecture. It is observed that the proposed GNLA algorithm reduces training time significantly and is able to provide even better recognition using fewer dimensions than the original NLA algorithm. We have tested this algorithm and showed that it works well in different datasets, including the EO Synthetic Vehicle database and the Sheffield face database

    Gaussian Weighted Neighborhood Connectivity of Nonlinear Line Attractor for Learning Complex Manifolds

    Get PDF
    The human brain has the capability to process high quantities of data quickly for detection and recognition tasks. These tasks are made simpler by the understanding of data, which intentionally removes redundancies found in higher dimensional data and maps the data onto a lower dimensional space. The brain then encodes manifolds created in these spaces, which reveal a specific state of the system. We propose to use a recurrent neural network, the nonlinear line attractor (NLA) network, for the encoding of these manifolds as specific states, which will draw untrained data towards one of the specific states that the NLA network has encoded. We propose a Gaussian-weighted modular architecture for reducing the computational complexity of the conventional NLA network. The proposed architecture uses a neighborhood approach for establishing the interconnectivity of neurons to obtain the manifolds. The modified NLA network has been implemented and tested on the Electro-Optic Synthetic Vehicle Model Database created by the Air Force Research Laboratory (AFRL), which contains a vast array of high resolution imagery with several different lighting conditions and camera views. It is observed that the NLA network has the capability for representing high dimensional data for the recognition of the objects of interest through its new learning strategy. A nonlinear dimensionality reduction scheme based on singular value decomposition has found to be very effective in providing a low dimensional representation of the dataset. Application of the reduced dimensional space on the modified NLA algorithm would provide fast and more accurate recognition performance for real time applications

    Intensity and Resolution Enhancement of Local Regions for Object Detection and Tracking in Wide Area Surveillance

    Get PDF
    Object tracking in wide area motion imagery is a complex problem that consists of object detection and target tracking over time. This challenge can be solved by human analysts who naturally have the ability to keep track of an object in a scene. A computer vision solution for object tracking has the potential to be a much faster and efficient solution. However, a computer vision solution faces certain challenges that do not affect a human analyst. To overcome these challenges, a tracking process is proposed that is inspired by the known advantages of a human analyst. First, the focus of a human analyst is emulated by doing processing only the local object search area. Second, it is proposed that an intensity enhancement process should be done on the local area to allow features to be detected in poor lighting conditions. This simulates the ability of the human eye to discern objects in complex lighting conditions. Third, it is proposed that the spatial resolution of the local search area is increased to extract better features and provide more accurate feature matching. A quantitative evaluation is performed to show tracking improvement using the proposed method. The three databases, each grayscale sequences that were obtained from aircrafts, used for these evaluations include the Columbus Large Image Format database, the Large Area Image Recorder database, and the Sussex database

    Directional Ringlet Intensity Feature Transform for Tracking

    Get PDF
    The challenges existing for current intensity-based histogram feature tracking methods in wide area motion imagery include object structural information distortions and background variations, such as different pavement or ground types. All of these challenges need to be met in order to have a robust object tracker, while attaining to be computed at an appropriate speed for real-time processing. To achieve this we propose a novel method, Directional Ringlet Intensity Feature Transform (DRIFT), that employs Kirsch kernel filtering and Gaussian ringlet feature mapping. We evaluated the DRIFT on two challenging datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness and efficiency. Experimental results show that the proposed approach yields the highest accuracy compared to state-of-the-art object tracking methods

    GlacierNet2: A Hybrid Multi-Model Learning Architecture for Alpine Glacier Mapping

    Full text link
    In recent decades, climate change has significantly affected glacier dynamics, resulting in mass loss and an increased risk of glacier-related hazards including supraglacial and proglacial lake development, as well as catastrophic outburst flooding. Rapidly changing conditions dictate the need for continuous and detailed observations and analysis of climate-glacier dynamics. Thematic and quantitative information regarding glacier geometry is fundamental for understanding climate forcing and the sensitivity of glaciers to climate change, however, accurately mapping debris-cover glaciers (DCGs) is notoriously difficult based upon the use of spectral information and conventional machine-learning techniques. The objective of this research is to improve upon an earlier proposed deep-learning-based approach, GlacierNet, which was developed to exploit a convolutional neural-network segmentation model to accurately outline regional DCG ablation zones. Specifically, we developed an enhanced GlacierNet2 architecture thatincorporates multiple models, automatic post-processing, and basin-level hydrological flow techniques to improve the mapping of DCGs such that it includes both the ablation and accumulation zones. Experimental evaluations demonstrate that GlacierNet2 improves the estimation of the ablation zone and allows a high level of intersection over union (IOU: 0.8839) score. The proposed architecture provides complete glacier (both accumulation and ablation zone) outlines at regional scales, with an overall IOU score of 0.8619. This is a crucial first step in automating complete glacier mapping that can be used for accurate glacier modeling or mass-balance analysis

    Emotion recognition using spatiotemporal analysis of electroencephalographic signals

    No full text
    Emotion recognition using electroencephalographic (EEG) recordings is a new area of research which focuses on recognition of emotional states of mind rather than impulsive responses. EEG recordings are found useful for the detection of emotions through monitoring the emotion characteristics of spatiotemporal variations of activations inside the brain. To distinguish between different emotions using EEG data, we need to provide specific spectral descriptors as features to quantify these spatiotemporal variations. We propose several new features, namely Normalized Root Mean Square (NRMS), Absolute Logarithm Normalized Root Mean Square (ALRMS), Logarithmic Power (LP), Normalized Logarithmic Power (NLP), and Absolute Logarithm Normalized Logarithmic Power (ALNLP) for the classification of emotions. A protocol has been established to elicit five distinct emotions: joy, sadness, disgust, fear, surprise, and neutral. EEG signals are collected using a 256-channel system, preprocessed using band-pass filters and a Laplacian Montage, and decomposed into five frequency bands using Discrete Wavelet Transform. The decomposed signals are transformed into different spectral descriptors and are classified using a two-layer Multilayer Perceptron (MLP) neural network. The Logarithmic Power descriptor produces the highest recognition rates, 91.82% and 94.27% recognition for two different experiments, which is more than 2% higher than when using other features

    Hierarchical autoassociative polynomial network for deep learning of complex manifolds

    No full text
    Artificial neural networks are an area of research that has been explored extensively. With the formation of these networks, models of biological neural networks can be created mathematically for several different purposes. The neural network architecture being explored here is the nonlinear line attractor (NLA) network, which uses a polynomial weighting scheme instead of a linear weighting scheme for specific tasks. We have conducted research on this architecture and found that it works well to converge towards a specific trained pattern and diverge with untrained patterns. We have also improved the architecture with a Gaussian weighting scheme, which provides a modularity in the architecture and reduces redundancy in the network. Testing on the new weighting scheme improves network on different datasets gave better convergence characteristics, quicker training times, and improved recognition rates. The NLA architecture, however, is not able to reduce the dimensionality, thus a nonlinear dimensionality reduction technique is used. To improve the architecture further, we must be able to decompose the NLA architecture further to alleviate problems in the original structures and allow further improvements. We propose a hierarchical autoassociative polynomial network (HAP Net) which reorders the NLA architecture to include different ways to use polynomial weighting. In each layer, we can have orders of each input connected by a weight set, which can be trained by a backpropagation algorithm. By combining different architectures based on the understanding of MLP, attractor, and modular networks, we create a multi-purpose architecture including all aspects of the previous architecture which is far improved for classification and recognition tasks. Experiments conducted on the standard dataset, MNIST, shows very promising results of the HAP Net framework. Research work is progressing in evaluating performance on HAP Net on various datasets and also incorporating advanced learning strategies, convolutional neural networks, and extreme learning machine to investigate the performance

    Hierarchical autoassociative polynomial network for deep learning of complex manifolds

    No full text
    Artificial neural networks are an area of research that has been explored extensively. With the formation of these networks, models of biological neural networks can be created mathematically for several different purposes. The neural network architecture being explored here is the nonlinear line attractor (NLA) network, which uses a polynomial weighting scheme instead of a linear weighting scheme for specific tasks. We have conducted research on this architecture and found that it works well to converge towards a specific trained pattern and diverge with untrained patterns. We have also improved the architecture with a Gaussian weighting scheme, which provides a modularity in the architecture and reduces redundancy in the network. Testing on the new weighting scheme improves network on different datasets gave better convergence characteristics, quicker training times, and improved recognition rates. The NLA architecture, however, is not able to reduce the dimensionality, thus a nonlinear dimensionality reduction technique is used. To improve the architecture further, we must be able to decompose the NLA architecture further to alleviate problems in the original structures and allow further improvements. We propose a hierarchical autoassociative polynomial network (HAP Net) which reorders the NLA architecture to include different ways to use polynomial weighting. In each layer, we can have orders of each input connected by a weight set, which can be trained by a backpropagation algorithm. By combining different architectures based on the understanding of MLP, attractor, and modular networks, we create a multi-purpose architecture including all aspects of the previous architecture which is far improved for classification and recognition tasks. Experiments conducted on the standard dataset, MNIST, shows very promising results of the HAP Net framework. Research work is progressing in evaluating performance on HAP Net on various datasets and also incorporating advanced learning strategies, convolutional neural networks, and extreme learning machine to investigate the performance

    Emotion recognition using spatiotemporal analysis of electroencephalographic signals

    No full text
    Emotion recognition using electroencephalographic (EEG) recordings is a new area of research which focuses on recognition of emotional states of mind rather than impulsive responses. EEG recordings are found useful for the detection of emotions through monitoring the emotion characteristics of spatiotemporal variations of activations inside the brain. To distinguish between different emotions using EEG data, we need to provide specific spectral descriptors as features to quantify these spatiotemporal variations. We propose several new features, namely Normalized Root Mean Square (NRMS), Absolute Logarithm Normalized Root Mean Square (ALRMS), Logarithmic Power (LP), Normalized Logarithmic Power (NLP), and Absolute Logarithm Normalized Logarithmic Power (ALNLP) for the classification of emotions. A protocol has been established to elicit five distinct emotions: joy, sadness, disgust, fear, surprise, and neutral. EEG signals are collected using a 256-channel system, preprocessed using band-pass filters and a Laplacian Montage, and decomposed into five frequency bands using Discrete Wavelet Transform. The decomposed signals are transformed into different spectral descriptors and are classified using a two-layer Multilayer Perceptron (MLP) neural network. The Logarithmic Power descriptor produces the highest recognition rates, 91.82% and 94.27% recognition for two different experiments, which is more than 2% higher than when using other features

    Vehicle Tracking under Occlusion Conditions using Directional Ringlet Intensity Feature Transform

    No full text
    The tracking of vehicles in wide area motion imagery (WAMI) can be a challenge due to the full and partial occlusions that can occur. The proposed solution for this challenge is to use the Directional Ringlet Intensity Feature Transform (DRIFT) feature extraction method with a Kalman filter. The proposed solution will utilize the properties of the DRIFT feature to solve the partial occlusion challenges. The Kalman filter will be used to estimate the object location during a full occlusion. The proposed solution will be tested on several vehicle sequences from the Columbus Large Image Format (CLIF) dataset
    corecore